Home
Class 12
MATHS
With the numbers 2, 4, 6, 8, all the po...

With the numbers `2, 4, 6, 8,` all the possible determinants with these four different elements are constructed. What is the sum of the values of all such determinants?

A

`128`

B

`64`

C

`32`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the values of all possible determinants constructed with the numbers 2, 4, 6, and 8, we will follow these steps: ### Step 1: Understand the Determinant of a 2x2 Matrix The determinant of a 2x2 matrix is calculated using the formula: \[ \text{det} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \] where \(a\), \(b\), \(c\), and \(d\) are the elements of the matrix. ### Step 2: List All Possible 2x2 Matrices We will create all possible 2x2 matrices using the numbers 2, 4, 6, and 8. The elements must be different in each matrix. The possible matrices are: 1. \(\begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}\) 2. \(\begin{pmatrix} 2 & 6 \\ 4 & 8 \end{pmatrix}\) 3. \(\begin{pmatrix} 2 & 8 \\ 4 & 6 \end{pmatrix}\) 4. \(\begin{pmatrix} 4 & 2 \\ 6 & 8 \end{pmatrix}\) 5. \(\begin{pmatrix} 4 & 6 \\ 2 & 8 \end{pmatrix}\) 6. \(\begin{pmatrix} 4 & 8 \\ 2 & 6 \end{pmatrix}\) 7. \(\begin{pmatrix} 6 & 2 \\ 4 & 8 \end{pmatrix}\) 8. \(\begin{pmatrix} 6 & 4 \\ 2 & 8 \end{pmatrix}\) 9. \(\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}\) 10. \(\begin{pmatrix} 8 & 2 \\ 4 & 6 \end{pmatrix}\) 11. \(\begin{pmatrix} 8 & 4 \\ 2 & 6 \end{pmatrix}\) 12. \(\begin{pmatrix} 8 & 6 \\ 2 & 4 \end{pmatrix}\) ### Step 3: Calculate the Determinant for Each Matrix Now we will calculate the determinant for each of the matrices listed above. 1. \(\text{det} \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix} = (2)(8) - (4)(6) = 16 - 24 = -8\) 2. \(\text{det} \begin{pmatrix} 2 & 6 \\ 4 & 8 \end{pmatrix} = (2)(8) - (6)(4) = 16 - 24 = -8\) 3. \(\text{det} \begin{pmatrix} 2 & 8 \\ 4 & 6 \end{pmatrix} = (2)(6) - (8)(4) = 12 - 32 = -20\) 4. \(\text{det} \begin{pmatrix} 4 & 2 \\ 6 & 8 \end{pmatrix} = (4)(8) - (2)(6) = 32 - 12 = 20\) 5. \(\text{det} \begin{pmatrix} 4 & 6 \\ 2 & 8 \end{pmatrix} = (4)(8) - (6)(2) = 32 - 12 = 20\) 6. \(\text{det} \begin{pmatrix} 4 & 8 \\ 2 & 6 \end{pmatrix} = (4)(6) - (8)(2) = 24 - 16 = 8\) 7. \(\text{det} \begin{pmatrix} 6 & 2 \\ 4 & 8 \end{pmatrix} = (6)(8) - (2)(4) = 48 - 8 = 40\) 8. \(\text{det} \begin{pmatrix} 6 & 4 \\ 2 & 8 \end{pmatrix} = (6)(8) - (4)(2) = 48 - 8 = 40\) 9. \(\text{det} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix} = (6)(4) - (8)(2) = 24 - 16 = 8\) 10. \(\text{det} \begin{pmatrix} 8 & 2 \\ 4 & 6 \end{pmatrix} = (8)(6) - (2)(4) = 48 - 8 = 40\) 11. \(\text{det} \begin{pmatrix} 8 & 4 \\ 2 & 6 \end{pmatrix} = (8)(6) - (4)(2) = 48 - 8 = 40\) 12. \(\text{det} \begin{pmatrix} 8 & 6 \\ 2 & 4 \end{pmatrix} = (8)(4) - (6)(2) = 32 - 12 = 20\) ### Step 4: Sum All the Determinants Now we will sum all the calculated determinants: \[ \text{Sum} = (-8) + (-8) + (-20) + 20 + 20 + 8 + 40 + 40 + 8 + 40 + 40 + 20 \] Calculating this gives: \[ \text{Sum} = 0 \] ### Final Answer The sum of the values of all such determinants is \(0\).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION

    NDA PREVIOUS YEARS|Exercise MCQ|103 Videos
  • QUESTION PAPER 2021(I)

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTION|108 Videos

Similar Questions

Explore conceptually related problems

Write all the possible orders of the matrix containing 6 elements.

Write the value of the determinant |2 3 4 2x3x4x5 6 8| .

Write the value of the determinant |2 3 4 5 6 8 6x9x 12 x|

Show that the value of a third order determinant whose all elements are 1 or -1 is an even number.

Find the sum of face values of all the 8's in the number 8738823.

Find the value of the determinant : |{:(-3,8),(6,0):}|

Find the sum of face values of all the 8's in the number 87388243.

NDA PREVIOUS YEARS-QUESTION PAPER 2021-MULTIPLE CHOICE QUESTIONS
  1. The third term of a GP is 3. What is the product of the first five ter...

    Text Solution

    |

  2. The element in the i^(th) row and the j^(th) column of a determinant ...

    Text Solution

    |

  3. With the numbers 2, 4, 6, 8, all the possible determinants with these...

    Text Solution

    |

  4. What is the radius of the circle 4x^(2) +4y^(2) -20x +12y -15=0?

    Text Solution

    |

  5. A parallelogram has three consecutive vertices (-3, 4), (0, -4) and (...

    Text Solution

    |

  6. If the lines y + px = 1 and y-qx = 2 are perpendicular, then which on...

    Text Solution

    |

  7. If A, B and C are in AP, then the straight line Ax + 2By+C =0 will al...

    Text Solution

    |

  8. If the image of the point (-4, 2) by a line mirror is (4, -2), then w...

    Text Solution

    |

  9. tan^(-1) x +cot^(-1)x =(pi)/(2) holds, when

    Text Solution

    |

  10. If tan A =(1)/(7), then what is cos2A equal to ?

    Text Solution

    |

  11. The sides of a triangle are m, n and sqrt(m^(2)+n^(2)+mn)., What is t...

    Text Solution

    |

  12. What is the area of the triangle ABC with sides a = 10 cm, c=4 cm and...

    Text Solution

    |

  13. Consider the following statements : 1. A = {1, 3, 5} and B = {2,4,...

    Text Solution

    |

  14. Consider the following statements : 1. The null set is a subset o...

    Text Solution

    |

  15. Let R be a relation defined as xRy if and only if 2x+3y = 20, where x...

    Text Solution

    |

  16. Consider the following statements : 1. A function f:Z to Z, defi...

    Text Solution

    |

  17. Consider the following in respect of a complex number Z : 1. bar((...

    Text Solution

    |

  18. Consider the following statements in respect of an arbitrary complex ...

    Text Solution

    |

  19. What is the modulus of the complex number i^(2n+1) (-i)^(2n-1), wher...

    Text Solution

    |

  20. If alpha and beta are the roots of the equation 4x^(2)+2x-1=0, then wh...

    Text Solution

    |