Home
Class 12
MATHS
If A = [(1,-1,1),(2,-1,0),(1,0,0)] find ...

If A = `[(1,-1,1),(2,-1,0),(1,0,0)]` find `A^(2)` and show that `A^(2) = A^(-1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse of each of the matrices given below : If A=[(1,-1,1),(2,-1,0),(1,0,0)], " show that " A^(-1)=A^(2)

If A=[(1,0,1),(0,0,0),(1,0,1)] , then find |A^(2)| .

If A=[(2,0,1),(2,1,3),(1,-1,0)] , then find (A^(2)-5A)

If A=[(1,0),(1,1)], B=[(2,0),(1,1)] and C=[(-1,2),(3,1)], show that

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] find 'k' so that A^(2)=5A+kI .

Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)-3I)/2

It A=[(-1,2,0),(-1,1,1),(0,1,0)] show that A^(2)=A^(-1)

If A=[{:( 0,-x),(x,0):}].B=[{:(0,1),(1,0):}] and x^(2)=-1 , then show that (A+B)^(2)=A^(2)+B^(2) .