Home
Class 12
MATHS
Let alpha and beta be two real numbers s...

Let `alpha` and `beta` be two real numbers such that `alpha+beta=1` and `alpha beta=-1` Let `p_(n)=(alpha)^(n)+(beta)^(n), p_(n-1)=11` and `p_(n+1)=29` for some integer `n geq 1` Then, the value of `p_(n)^(2)` is

Answer

Step by step text solution for Let alpha and beta be two real numbers such that alpha+beta=1 and alpha beta=-1 Let p_(n)=(alpha)^(n)+(beta)^(n), p_(n-1)=11 and p_(n+1)=29 for some integer n geq 1 Then, the value of p_(n)^(2) is by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

| alpha alpha1 beta F|=(alpha-P)(beta-alpha)

If alpha,beta be the roots of x^(2)-x-1=0 and A_(n)=alpha^(n)+beta^(n), then A . M of A_(n-1) and A_(n), is

Knowledge Check

  • Let alpha and beta be the roots of x^(2)-5x+3=0 with alpha gt beta . If a_(n) = a^(n)-beta^(n) for n ge1 , then the value of (3a_(6)+a_(8))/(a_(7)) is :

    A
    2
    B
    3
    C
    4
    D
    5
  • Let alpha and beta be the roots of equation x^(2) -6x-2=0 if a_(n)=alpha^(n)-beta^(n) , for n ge 1 , then the value of (a_(10) -2a_(8))/(2a_(9)) is equal to

    A
    3
    B
    `-3`
    C
    6
    D
    `-6`
  • Similar Questions

    Explore conceptually related problems

    Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n) , Show that V_(n+1) = pV_(n) -qV_(n-1) find V_(5)

    P_n=alpha^n+beta^n , alpha +beta=1 , alpha*beta=-1 , P_(n-1)=11 ,P_(n+1)=29 , then P_(n)^2=

    Let alpha,beta denote the cube roots of unity other than 1 and alpha!=beta. Let S=sum_(n=0)^(302)(-1)^(n)((alpha)/(beta))^(n). Then,the value of S is

    Let alpha,beta be the roots of x^(2)-x-1=0 and S_(n)=alpha^(n)+beta^(n), for all integers n>=1. Then,for every integern n>=2.

    Let alpha and beta be the roots of x^(2)-6x-2=0 with alpha>beta if a_(n)=alpha^(n)-beta^(n) for n>=1 then the value of (a_(10)-2a_(8))/(2a_(9))

    If tan(alpha+beta)=n tan(alpha-beta) then show that (n+1)sin2 beta=(n-1)sin2 alpha