Home
Class 11
MATHS
If tan^(-1)x+tan^(-1)y=(pi)/(4), and the...

If `tan^(-1)x+tan^(-1)y=(pi)/(4)`, and the value of `xy<1` ,then show that `x+y+xy=1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

If tan^(-1)x+tan^(-1)y=(pi)/(4), then write the value of x+y+xy.

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

If tan^(-1)x+tan^(-1)y=(pi)/(2), then prove that xy=1

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

If tan^(-1)x+tan^(-1)y+tan^(-1)z=0 then the value of (1)/(xy)+(1)/(yz)+(1)/(zx)is(x,y,z!=0)

If tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4) , then find the value of x.