Home
Class 6
MATHS
Subtract 3x^(3) - 5x^(2) - 9x + 6 " from...

Subtract `3x^(3) - 5x^(2) - 9x + 6 " from " 2x^(3) + 3y^(2) - 4z^(2) and x^(2) - 2y^(2) +z^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of subtracting \(3x^3 - 5x^2 - 9x + 6\) from \(2x^3 + 3y^2 - 4z^2\) and \(x^2 - 2y^2 + z^2\), we will follow these steps: ### Step 1: Write down the expressions We have two expressions from which we need to subtract the polynomial \(3x^3 - 5x^2 - 9x + 6\): 1. \(2x^3 + 3y^2 - 4z^2\) 2. \(x^2 - 2y^2 + z^2\) ### Step 2: Subtract from the first expression We start by subtracting \(3x^3 - 5x^2 - 9x + 6\) from \(2x^3 + 3y^2 - 4z^2\): \[ (2x^3 + 3y^2 - 4z^2) - (3x^3 - 5x^2 - 9x + 6) \] ### Step 3: Distribute the negative sign Distributing the negative sign gives us: \[ 2x^3 + 3y^2 - 4z^2 - 3x^3 + 5x^2 + 9x - 6 \] ### Step 4: Combine like terms Now we combine the like terms: - For \(x^3\): \(2x^3 - 3x^3 = -x^3\) - For \(x^2\): \(5x^2\) (only term) - For \(x\): \(9x\) (only term) - For \(y^2\): \(3y^2\) (only term) - For \(z^2\): \(-4z^2\) (only term) - Constant term: \(-6\) Putting it all together, we get: \[ -x^3 + 5x^2 + 9x + 3y^2 - 4z^2 - 6 \] ### Step 5: Subtract from the second expression Next, we subtract \(3x^3 - 5x^2 - 9x + 6\) from \(x^2 - 2y^2 + z^2\): \[ (x^2 - 2y^2 + z^2) - (3x^3 - 5x^2 - 9x + 6) \] ### Step 6: Distribute the negative sign Distributing the negative sign gives us: \[ x^2 - 2y^2 + z^2 - 3x^3 + 5x^2 + 9x - 6 \] ### Step 7: Combine like terms Now we combine the like terms: - For \(x^3\): \(-3x^3\) (only term) - For \(x^2\): \(x^2 + 5x^2 = 6x^2\) - For \(y^2\): \(-2y^2\) (only term) - For \(z^2\): \(z^2\) (only term) - For \(x\): \(9x\) (only term) - Constant term: \(-6\) Putting it all together, we get: \[ -3x^3 + 6x^2 + 9x - 2y^2 + z^2 - 6 \] ### Final Solutions 1. From the first expression: \(-x^3 + 5x^2 + 9x + 3y^2 - 4z^2 - 6\) 2. From the second expression: \(-3x^3 + 6x^2 + 9x - 2y^2 + z^2 - 6\)
Promotional Banner

Similar Questions

Explore conceptually related problems

Subtract 4x^(2) - z^(2) from the sum of 2x^(2) + 3y^(2) - 4z^(2) and x^(2) - 2y^(2) + z^(2)

Subtract 6x^(3) -5x^(2)+4x-3 from the sum x+2x^(2)-3x^(3) and 2-x^(2)+6x-x^(3) .

Subtract 5x^2 - 4y^2 + 6y - 3 from 7x^2 - 4xy + 8y^2 + 5x - 3y .

Subtract x - z + 2y " from " 3x + y - 2z

Subtract: x^2y-4/5x y^2+4/3x y\ from 2/3x^2y+3/2x y^2-1/3x y

Subtract: 2x^2 -5xy +3y^2+5 from 4x^2+3xy-5y^2+9

Subtract: x^2-3x y+7y^2-2 from 6x y-4x^2-y^2+5

Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

Subtract: 6x^3-7x^2+5x-3 from 4-5x+6x^2-8x^3 x^3+2x^2y+6x y^2-y^3 from y^3-3x y^2-4x^2y

Subtract : 3/2x^2y+4/5y-1/3x^2y z\ from \ (12)/5x^2y z-3/5x y z+2/3x^2ydot