Home
Class 6
MATHS
Subtract 4x^(2) - z^(2) from the sum o...

Subtract `4x^(2) - z^(2)` from the sum of `2x^(2) + 3y^(2) - 4z^(2) and x^(2) - 2y^(2) + z^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Find the sum of the two expressions We need to add the expressions \(2x^2 + 3y^2 - 4z^2\) and \(x^2 - 2y^2 + z^2\). **Calculation:** \[ (2x^2 + 3y^2 - 4z^2) + (x^2 - 2y^2 + z^2) \] ### Step 2: Combine like terms Now, we will combine the like terms from the sum we calculated in Step 1. - For \(x^2\): \(2x^2 + x^2 = 3x^2\) - For \(y^2\): \(3y^2 - 2y^2 = 1y^2\) or simply \(y^2\) - For \(z^2\): \(-4z^2 + z^2 = -3z^2\) So, the sum becomes: \[ 3x^2 + y^2 - 3z^2 \] ### Step 3: Subtract \(4x^2 - z^2\) from the sum Next, we need to subtract the expression \(4x^2 - z^2\) from the sum we found in Step 2. **Calculation:** \[ (3x^2 + y^2 - 3z^2) - (4x^2 - z^2) \] ### Step 4: Distribute the negative sign Distributing the negative sign gives: \[ 3x^2 + y^2 - 3z^2 - 4x^2 + z^2 \] ### Step 5: Combine like terms again Now, we will combine the like terms again: - For \(x^2\): \(3x^2 - 4x^2 = -1x^2\) or simply \(-x^2\) - For \(y^2\): \(y^2\) remains as it is. - For \(z^2\): \(-3z^2 + z^2 = -2z^2\) So, the final result is: \[ -x^2 + y^2 - 2z^2 \] ### Final Answer: The final answer is: \[ -x^2 + y^2 - 2z^2 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Subtract 3x^(3) - 5x^(2) - 9x + 6 " from " 2x^(3) + 3y^(2) - 4z^(2) and x^(2) - 2y^(2) +z^(2)

What should be subtracted from 2x^(2)-y^(2)+4z^(2) to get x^(2)+y^(2)-z^(2) ?

Subtract 3x-4y-7z from the sum of x-3y+2z\ a n d-4x+9y-11 zdot

Subtract x - z + 2y " from " 3x + y - 2z

Subtract the sum of (x^2-2y^2+xy) and (y^2+z^2+xyz) from the sum of (z^2-2zx-xyz) and (x^2+xy)

Subtract the sum of 13 x-4y+7z and -6z+6x+3y from the sum of 6x-4y-4z and 2x+4y-7.

Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

The coefficient of x^2y^4z^2 in the expansion of (2x - 3y + 4z)^9 is

Subtract : 3/2x^2y+4/5y-1/3x^2y z\ from \ (12)/5x^2y z-3/5x y z+2/3x^2ydot

From the sum of 5x-3x^2+y^2 and 8x-3y^2-x^2+x subtract the sum of 2x^2+y^2+4x-2y and x^2+y^2-3x-2y