Home
Class 6
MATHS
Find the product of : -5a^(2)b and 4b^...

Find the product of :
`-5a^(2)b and 4b^(2) c`

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the expressions \(-5a^{2}b\) and \(4b^{2}c\), we will follow these steps: ### Step 1: Write down the expressions We have the two expressions: \[ -5a^{2}b \quad \text{and} \quad 4b^{2}c \] ### Step 2: Multiply the coefficients First, we multiply the numerical coefficients: \[ -5 \times 4 = -20 \] ### Step 3: Multiply the variable \(a\) The variable \(a\) appears only in the first expression: \[ a^{2} \quad \text{(there is no \(a\) in the second expression)} \] ### Step 4: Multiply the variable \(b\) Now, we multiply the \(b\) terms: \[ b \times b^{2} = b^{1+2} = b^{3} \] ### Step 5: Include the variable \(c\) The variable \(c\) appears only in the second expression: \[ c \quad \text{(there is no \(c\) in the first expression)} \] ### Step 6: Combine all parts Now, we combine all the parts we calculated: \[ -20a^{2}b^{3}c \] ### Final Answer Thus, the product of \(-5a^{2}b\) and \(4b^{2}c\) is: \[ \boxed{-20a^{2}b^{3}c} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the product (a-b)^2=

Find the product : (i) (a+2b+4c)(a^(2)+4b^(2)+16c^(2)-2ab-8bc-4ca) (ii) (3x-5y-4)(9x^(2)+25y^(2)+15xy+12x-20y+16) (iii) (2-3b-7c)(4+9b^(2)+49c^(2)+6b-21bc+14c) (iv) (sqrt(2)a+2sqrt(2)b+c)(2a^(2)+8b^(2)+c^(2)-4ab-2sqrt(2)bc-sqrt(2)ac)

Find the product (7a-5b)(49a^(2)+35ab+25b^(2)) .

Find the product (2a-3b-2c)(4a^(2)+9b^(2)+4c^(2)+6ab-6bc+4ca) .

Find the products: (7a-5b)(49 a^2+35 a b+25 b^2)

Find the product: (2a-3b-2c)(4\ a^2+\ 9\ b^2+\ 4\ c^2+\ 6\ a b-6\ b c+4c a)

Find the product: (a-b-c)(a^2+b^2+c^2+a b+a c-b c)

Find the product : (i) (x+3)(x^(2)-3x+9) " " (ii) (7+5b)(49-35b+25b^(2)) (iii) (5a+(1)/(2)) (25a^(2)-(5a)/(2)+(1)/(4)) " " .

Find each of the products: (7a b)xx\ (-5a b^2c)xx\ (6a b c^2)

find the product of following (2/5a^2b)xx\ (-15 b^2a c)xx\ (-1/2c^2)