Home
Class 6
MATHS
Multiply : 3/7 x^(2) y^(3) and -14/15x...

Multiply :
`3/7 x^(2) y^(3) and -14/15xy^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying the algebraic expressions \( \frac{3}{7} x^{2} y^{3} \) and \( -\frac{14}{15} xy^{2} \), we can follow these steps: ### Step 1: Multiply the numerical coefficients We start by multiplying the numerical parts of the expressions: \[ \frac{3}{7} \times -\frac{14}{15} \] To do this, we multiply the numerators and the denominators: \[ = \frac{3 \times -14}{7 \times 15} \] Calculating the numerator: \[ 3 \times -14 = -42 \] Calculating the denominator: \[ 7 \times 15 = 105 \] So we have: \[ \frac{-42}{105} \] ### Step 2: Simplify the numerical coefficient Now we simplify \( \frac{-42}{105} \). We can divide both the numerator and the denominator by their greatest common divisor (GCD), which is 21: \[ \frac{-42 \div 21}{105 \div 21} = \frac{-2}{5} \] ### Step 3: Multiply the variables Next, we multiply the variable parts. We have: \[ x^{2} \times x^{1} \quad \text{and} \quad y^{3} \times y^{2} \] Using the property of exponents that states \( x^{a} \times x^{b} = x^{a+b} \), we can add the exponents: \[ x^{2+1} = x^{3} \quad \text{and} \quad y^{3+2} = y^{5} \] ### Step 4: Combine the results Now we combine the simplified numerical coefficient with the variable parts: \[ \frac{-2}{5} x^{3} y^{5} \] ### Final Answer Thus, the final result of multiplying \( \frac{3}{7} x^{2} y^{3} \) and \( -\frac{14}{15} xy^{2} \) is: \[ \frac{-2}{5} x^{3} y^{5} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Multiply : -3x^(2)y^(2) with -2xyz

Multiply : -(3)/(2)x^(5)y^(3) and (4)/(9)a^(2)x^(3)y

Multiply : -2x^(2) with 3xy

Multiply : (ii) (2)/(7) "and" (-14)/(9)

Multiply : 2x - 3y by 6

Multiply : 3 - (2)/(3)xy + (5)/(7)xy^(2) - (16)/(21)x^(2)y by -21 x^(2)y^(2)

Multiply 3x^(2)y and -2xy^(2) . Verify the product for x = 1 and y = 2.

Multiply -5xy^(2), -3x^(2)yz and 8yz^(2) . Verify the result for x = 1, y = 2 and z = 3.

Multiply : 3x^(2) y - 7xy^(2) +2xy" by " 4xy

Multiply: 2x by (3x+5y)