Home
Class 6
MATHS
Multiply : 2 1/3 a^(2) b and 2/7 a^(3)...

Multiply :
`2 1/3 a^(2) b and 2/7 a^(3)b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying the expressions \(2 \frac{1}{3} a^2 b\) and \(\frac{2}{7} a^3 b^2\), we can follow these steps: ### Step 1: Convert the mixed fraction to an improper fraction The mixed fraction \(2 \frac{1}{3}\) can be converted to an improper fraction. \[ 2 \frac{1}{3} = 2 + \frac{1}{3} = \frac{2 \times 3 + 1}{3} = \frac{6 + 1}{3} = \frac{7}{3} \] ### Step 2: Write the multiplication expression Now we can rewrite the multiplication expression using the improper fraction: \[ \frac{7}{3} a^2 b \times \frac{2}{7} a^3 b^2 \] ### Step 3: Multiply the coefficients (numerical parts) Next, we multiply the numerical coefficients: \[ \frac{7}{3} \times \frac{2}{7} = \frac{7 \times 2}{3 \times 7} = \frac{14}{21} \] Now, simplify \(\frac{14}{21}\): \[ \frac{14}{21} = \frac{2}{3} \quad (\text{since } 14 \div 7 = 2 \text{ and } 21 \div 7 = 3) \] ### Step 4: Multiply the variables Now we multiply the variables \(a^2\) and \(a^3\), and \(b\) and \(b^2\): \[ a^2 \times a^3 = a^{2+3} = a^5 \] \[ b \times b^2 = b^{1+2} = b^3 \] ### Step 5: Combine the results Now, we can combine the results from the coefficients and the variables: \[ \frac{2}{3} a^5 b^3 \] ### Final Answer Thus, the final answer is: \[ \frac{2}{3} a^5 b^3 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Multiply : a^(2), ab and b^(2)

Multiply : 2a^(3) - 3a^(2)b and -(1)/(2)ab^(2)

Multiply : abx, -3a^(2)x and 7b^(2)x^(3)

Multiply : 1/2 a^(2)b - 2/3 ab^(2) + 5 " by " 6abc

Multiply : -(2)/(3)a^(7)b^(2) and -(9)/(4)ab^(5)

Multiply 6a^(2)b^(3) and -4a^(3)b^(4) .

Multiply : 3a^(2)b - 5ab" by " 3ab

Multiply : (i) (3)/(-2) "and" (-7)/(3)

Multiply : 8ab^(2) by -4a^(3)b^(4)

Multiply : (2)/(3)ab by -(1)/(4)a^(2)b