Home
Class 6
MATHS
Find the product of : 3ab^(2),5abc and...

Find the product of :
`3ab^(2),5abc and 2a^(2)c^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the algebraic expressions \(3ab^2\), \(5abc\), and \(2a^2c^3\), we will follow these steps: ### Step 1: Write down the expressions We have the following expressions to multiply: \[ 3ab^2, \quad 5abc, \quad 2a^2c^3 \] ### Step 2: Multiply the numerical coefficients First, we will multiply the numerical coefficients: \[ 3 \times 5 \times 2 \] Calculating this gives: \[ 3 \times 5 = 15 \] Then, \[ 15 \times 2 = 30 \] ### Step 3: Multiply the variables with the same base Next, we will multiply the variables. #### For \(a\): We have: \[ a^1 \quad (from \, 3ab^2) \quad + \quad a^1 \quad (from \, 5abc) \quad + \quad a^2 \quad (from \, 2a^2c^3) \] Adding the exponents: \[ 1 + 1 + 2 = 4 \] So, we get \(a^4\). #### For \(b\): We have: \[ b^2 \quad (from \, 3ab^2) \quad + \quad b^1 \quad (from \, 5abc) \] Adding the exponents: \[ 2 + 1 = 3 \] So, we get \(b^3\). #### For \(c\): We have: \[ c^1 \quad (from \, 5abc) \quad + \quad c^3 \quad (from \, 2a^2c^3) \] Adding the exponents: \[ 1 + 3 = 4 \] So, we get \(c^4\). ### Step 4: Combine all parts Now, we can combine all the results: \[ 30a^4b^3c^4 \] ### Final Answer Thus, the product of the given expressions is: \[ \boxed{30a^4b^3c^4} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the product of : -9/16 a^(3)b^(2) and 3 1/5 ab

Add : 3ab^(2) , - 5ab^(2)

Find the product : 1.2xx3.5xx0.3

Find the product (2a-3b-2c)(4a^(2)+9b^(2)+4c^(2)+6ab-6bc+4ca) .

Find the product. -3(2)/(5)xx4(2)/(7)

When a=3,b=0, c=-2 find the value of : (2ab+5bc-ac)/(a^(2)+3ab)

If a= 2, b= 3 and c= 4, find the value of : (ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3)) , using suitable identity

Find each of the products: (-5a)xx\ (-10 a^2)xx(-2a^3)

Find the product: (1/3x-y^2/5)(1/3x+y^2/5)

Find the value of : 3abc-2a^2+4b^3+ac given that a=-2,b=3 and c=-1