Home
Class 6
MATHS
Multiply (7a^(2) b - 5ab^(2) +3ab) " ...

Multiply
`(7a^(2) b - 5ab^(2) +3ab) " by " (- 2ab) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying the algebraic expression \( (7a^2b - 5ab^2 + 3ab) \) by \( -2ab \), we will follow these steps: ### Step 1: Write down the expression to be multiplied We start with the expression: \[ -2ab \times (7a^2b - 5ab^2 + 3ab) \] ### Step 2: Distribute \( -2ab \) to each term in the parentheses We will distribute \( -2ab \) to each term inside the parentheses: \[ -2ab \times 7a^2b + (-2ab) \times (-5ab^2) + (-2ab) \times 3ab \] ### Step 3: Multiply \( -2ab \) with the first term \( 7a^2b \) Calculating the first term: \[ -2ab \times 7a^2b = -14a^{2+1}b^{1+1} = -14a^3b^2 \] ### Step 4: Multiply \( -2ab \) with the second term \( -5ab^2 \) Calculating the second term: \[ -2ab \times (-5ab^2) = 10a^{1+1}b^{1+2} = 10a^2b^3 \] ### Step 5: Multiply \( -2ab \) with the third term \( 3ab \) Calculating the third term: \[ -2ab \times 3ab = -6a^{1+1}b^{1+1} = -6a^2b^2 \] ### Step 6: Combine all the results Now we combine all the results from the three multiplications: \[ -14a^3b^2 + 10a^2b^3 - 6a^2b^2 \] ### Step 7: Rearrange and simplify if possible We can rearrange the terms: \[ -14a^3b^2 + (10a^2b^3 - 6a^2b^2) \] Notice that \( 10a^2b^3 - 6a^2b^2 \) can be combined: \[ = -14a^3b^2 + 4a^2b^2 \] ### Final Answer Thus, the final result of the multiplication is: \[ -14a^3b^2 + 4a^2b^2 \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Multiply : a^(2), ab and b^(2)

Multiply : 3a^(2)b - 5ab" by " 3ab

Multiply 8a^(2)b - 3ab + 5b^(2) by 6ab.

Multiply : 1/2 a^(2)b - 2/3 ab^(2) + 5 " by " 6abc

Add : 3ab^(2) , - 5ab^(2)

Multiply : 8ab^(2) by -4a^(3)b^(4)

Multiply : (ab - 1)(3-2ab)

Multiply : (2)/(3)ab by -(1)/(4)a^(2)b

Multiply : 2/b ab " with " -6a^(2)c

Multiply : 2a^(3) - 3a^(2)b and -(1)/(2)ab^(2)