Home
Class 6
MATHS
Divide 28a^(2) " by " 7a^(5)...

Divide
`28a^(2) " by " 7a^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of dividing \( 28a^2 \) by \( 7a^5 \), we will follow these steps: ### Step-by-Step Solution: 1. **Write the Division as a Fraction**: \[ \frac{28a^2}{7a^5} \] 2. **Separate the Numerical and Variable Parts**: We can separate the coefficients (numerical parts) and the variables: \[ \frac{28}{7} \cdot \frac{a^2}{a^5} \] 3. **Divide the Numerical Coefficients**: Calculate \( \frac{28}{7} \): \[ 28 \div 7 = 4 \] 4. **Apply the Laws of Exponents to the Variables**: For the variables, we use the rule \( \frac{a^m}{a^n} = a^{m-n} \): \[ \frac{a^2}{a^5} = a^{2-5} = a^{-3} \] 5. **Combine the Results**: Now, we combine the results from the numerical part and the variable part: \[ 4 \cdot a^{-3} \] 6. **Rewrite the Expression**: Since \( a^{-3} \) can be rewritten as \( \frac{1}{a^3} \), we have: \[ 4a^{-3} = \frac{4}{a^3} \] ### Final Answer: \[ \frac{28a^2}{7a^5} = \frac{4}{a^3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Divide 60 a^(5) by 12 a^(2)

Divide : 2.8 div10

Divide 28.82 by 20

Divide : a^(2) + 7a + 12 by a + 4

Divide : 9a^(5) - 6a^(2) by 3a^(2)

Divide 8.28 by 12

Divide: 35 a^2+32 a-99\ b y\ 7a-9 a x^2+(b+a c)x+b c\ b y\ x+c

Divide 3.28 by 0.4

Divide: (i) 5/9 by 2/3 (ii) 28 by 7/4 (iii) 36 by 6 2/3

Divide: (i) 1 by 1/2 (ii) 5\ b y\ (-5)/7