Home
Class 6
MATHS
Divide -36x^(7)y^(6) z " by " - 12x^(2)y...

Divide `-36x^(7)y^(6) z " by " - 12x^(2)y^(4)z^(3)`

Text Solution

Verified by Experts

The correct Answer is:
`= (3x^(5)y^(2))/(z^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Divide : 36x^(2)y^(2) + 42 xy^(3) - 24 x^(3)y^(2) - 12 y^(5) by - 6y^(2)

Divide : 12x^(2) + 7xy - 12y^(2) by 3x + 4y

Divide: 25 x^3y^2\ by -15 x^2y (ii) -72 x^2y z\ by -12 x y z

Solve the given equations: x +y +z=0 x^(3) + y^(3) +z^(3)=18 x^(7) + y^(7) + z^(7) = 2058 where x,y,z in R

Let |{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)z^(6)(x^(3)-z^(3)),,x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),,xz^(3)(z^(6)-x^(6)) ,,xy^(2)(x^(6)-y^(6))),(y^(2)^(3)(z^(3)-y^(3)),,xz^(3)(x^(3)-z^(3)),,xy^(2)(y^(3)-x^(3))):}| " and " Delta_(2)= |{:(x,,y^(2),,z^(3)),(x^(4),,y^(5) ,,z^(6)),(x^(7),,y^(8),,z^(9)):}| .Then Delta_(1)Delta_(2) is equal to

Divide the given polynomial by the given monomial. (i) (5x^2 - 6x) -: 3x (ii) (3y^8-4y^6+5y^4)divy^4 (iii) 8(x^3y^2z^2 + x^2y^3z^2 + x^2y^2z^3) -: 4x^2y^2z^2 (iv) (x^3+2x^2+3x)div2x (v) (p^3q^6 - p^6q^3) -: p^3q^3

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(y)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

If x,y,z in R and |{:(x,y^2,z^3),(x^4,y^5,z^6),(x^7,y^8,z^9):}|=2 then find the value of |{:(y^5z^6(z^3-y^3),x^4z^6(x^3-z^3),x^4y^5(y^3-x^3)),(y^2z^3(y^6-z^6),xz^3(z^6-x^6), xy^2(x^6-y^6)),(y^2z^3(z^3-y^3),xz^3(x^3-z^3),xy^2(y^3-x^3)):}|

Divide: 5x^3-15 x^2+25 x\ b y\ 5x 4z^3+6z^2-z\ b y-1/2z

Describe the graph of the set of points (x,y,z) where (x-6)^(2) +(y+3)^(2) +(z-2)^(2)=36