Home
Class 6
MATHS
Divide 14x^(3)y^(2) + 8x^(2)y^(3) - 22xy...

Divide `14x^(3)y^(2) + 8x^(2)y^(3) - 22xy^(4) " by " -2xy^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of dividing the expression \(14x^3y^2 + 8x^2y^3 - 22xy^4\) by \(-2xy^2\), we will follow these steps: ### Step 1: Write the expression to be divided We start with the expression: \[ \frac{14x^3y^2 + 8x^2y^3 - 22xy^4}{-2xy^2} \] ### Step 2: Split the division We can split the division into separate fractions: \[ = \frac{14x^3y^2}{-2xy^2} + \frac{8x^2y^3}{-2xy^2} - \frac{22xy^4}{-2xy^2} \] ### Step 3: Simplify each term Now we simplify each term individually. 1. **First term:** \[ \frac{14x^3y^2}{-2xy^2} = 14 \div -2 \cdot \frac{x^3}{x} \cdot \frac{y^2}{y^2} = -7x^{3-1} = -7x^2 \] 2. **Second term:** \[ \frac{8x^2y^3}{-2xy^2} = 8 \div -2 \cdot \frac{x^2}{x} \cdot \frac{y^3}{y^2} = -4x^{2-1}y^{3-2} = -4xy \] 3. **Third term:** \[ -\frac{22xy^4}{-2xy^2} = 22 \div -2 \cdot \frac{xy^4}{xy^2} = 11y^{4-2} = 11y^2 \] ### Step 4: Combine the results Now we combine the simplified terms: \[ -7x^2 - 4xy + 11y^2 \] ### Final Result Thus, the final result of the division is: \[ -7x^2 - 4xy + 11y^2 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Divide : 36x^(2)y^(2) + 42 xy^(3) - 24 x^(3)y^(2) - 12 y^(5) by - 6y^(2)

Multiply : 3x^(2) y - 7xy^(2) +2xy" by " 4xy

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

Using horizontal method : Add x^(2)+y^(2)- 2xy , -2x^(2)-y^(2)-2xy and 3x^(2) +y^(2) +xy

Divide : 8x^(2) - 45y^(2) + 18xy by 2x - 3y.

Simplify the following : 2x^(2) + 3y^(2) - 5xy +5x^(2) - y^(2) + 6xy - 3x^(2)

Divide : 12x^(2) + 7xy - 12y^(2) by 3x + 4y

Add the following expressions using horizontal method : -x^(2)y + xy^(2) + 2xy , 3x^(2) y + 4xy^(2) + 5xy and 7x^(2)y - 10xy^(2) - xy

Divide x^(6) - y^(6) by the product of x^(2) + xy + y^(2) and x - y .

Simplify the following : 3xy^(2) - 5x^(2)y + 7xy - 9xy^(2) - 4xy + 6x^(2)y