Home
Class 6
MATHS
Simplify : 2/3 (2a-3b) -3/4 (2a +5/3 b)...

Simplify : `2/3 (2a-3b) -3/4 (2a +5/3 b)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \frac{2}{3} (2a - 3b) - \frac{3}{4} (2a + \frac{5}{3} b) \), we will follow these steps: ### Step 1: Distribute the coefficients Distributing \( \frac{2}{3} \) and \( -\frac{3}{4} \) to the terms inside the parentheses: \[ \frac{2}{3} \cdot 2a - \frac{2}{3} \cdot 3b - \frac{3}{4} \cdot 2a - \frac{3}{4} \cdot \frac{5}{3} b \] ### Step 2: Calculate each term Calculating each term: 1. \( \frac{2}{3} \cdot 2a = \frac{4}{3} a \) 2. \( -\frac{2}{3} \cdot 3b = -2b \) 3. \( -\frac{3}{4} \cdot 2a = -\frac{3}{2} a \) 4. \( -\frac{3}{4} \cdot \frac{5}{3} b = -\frac{5}{4} b \) Now we can rewrite the expression: \[ \frac{4}{3} a - 2b - \frac{3}{2} a - \frac{5}{4} b \] ### Step 3: Combine like terms Now, we will combine the terms involving \( a \) and the terms involving \( b \). For \( a \): \[ \frac{4}{3} a - \frac{3}{2} a \] To combine these, we need a common denominator. The least common multiple of 3 and 2 is 6. Rewriting the fractions: \[ \frac{4}{3} = \frac{8}{6} \quad \text{and} \quad \frac{3}{2} = \frac{9}{6} \] Now combine: \[ \frac{8}{6} a - \frac{9}{6} a = -\frac{1}{6} a \] For \( b \): \[ -2b - \frac{5}{4} b \] Again, we need a common denominator. The least common multiple of 1 and 4 is 4. Rewriting \( -2b \): \[ -2b = -\frac{8}{4} b \] Now combine: \[ -\frac{8}{4} b - \frac{5}{4} b = -\frac{13}{4} b \] ### Step 4: Write the final simplified expression Putting it all together, we have: \[ -\frac{1}{6} a - \frac{13}{4} b \] ### Final Answer: \[ -\frac{1}{6} a - \frac{13}{4} b \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : 3a-[2a-(3b-a)]

Simplify 2/3 a - 3/2 b +c - 2a +3 (b-c) -2/5 c

Simplify: 2/3+3/4+1/2

Simplify: (a)1 3/4xx 2 2/5xx 3 4/7 (b) 5 5/9-: 3 1/3

Simplify: 5/8+2/5+3/4

Simplify (a+b)(2a-3b+c)-(2a-3b)c.

Simplify the following expressions : 1/2 (a - 3b) - 2/3 (1/4 a - 4/3b)

Simplify : (5a + 5b - c)(2b - 3c)

Simplify : a^(2) - 2a + {5a^(2) - 3a - 4a^(2)}

Simplify the following expressions : 2/3 (2a-b) +1/2 (a-2b+c) - 1/3 c