Home
Class 6
MATHS
a(b-c) +b(c - a) +c(a-b) is equal to...

`a(b-c) +b(c - a) +c(a-b)` is equal to

A

`ab+bc + ca `

B

`2(ab+bc+ca)`

C

0

D

none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 be equal prove that a,b,c are in H.P.

If a ,b, c ,d are in G.P, then (b-c)^2+(c-a)^2+(d-b)^2 is equal to

If a ,b ,c are the sides of a triangle, then the minimum value of a/(b+c-a)+b/(c+a-b)+c/(a+b-c) is equal to (a) 3 (b) 6 (c) 9 (d) 12

If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal, show that 2//b=1//a+1// c dot

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If f(x)=a=b x+c x^2a n dalpha,beta,gamma are the roots of the equation x^3=1,t h e n|a b c b c a c a b| is equal to f(alpha)+f(beta)+f(gamma) f(alpha)f(beta)+f(beta)f(gamma)+f(gamma)f(alpha) f(alpha)f(beta)f(gamma) -f(alpha)f(beta)f(gamma)

If the roots of the equation (b-c)x^2+(c-a)x+(a-b)=0 are equal then a,b,c will be in

|{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

The value of the determinant |-a b c a-b c a b-c| is equal to- 0 b. (a-b)(b-c)(c-a) c. (a+b)(b+c)(c+a) d. 4a b c

If the roots of the equation (b-c)x^2+(c-a)x+(a-b)=0 are equal, then prove that 2b=a+c .