Home
Class 12
MATHS
If the revenue function is R(x) = 3x^(3)...

If the revenue function is `R(x) = 3x^(3) - 8x + 2`, then the average revenue function is

A

`3x^2-8+(2)/x`

B

`3x^4+2/x`

C

0

D

1

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 05

    ICSE|Exercise SECTION .B. |9 Videos
  • SELF ASSESSMENT PAPER 04

    ICSE|Exercise SECTION .C.|12 Videos
  • SELF ASSESSMENT PAPER 06

    ICSE|Exercise Section .C. |11 Videos

Similar Questions

Explore conceptually related problems

If the revenue function is R(x)= (2)/(x) +x+1 , then find the marginal revenue function.

If the revenue function f(x) = 1/x+2 , then what is the marginal revenue function?

Knowledge Check

  • If the marginal revenue function of a commodity is MR=2x-9x^(2) then the revenue function is

    A
    `2x^(2)-9x^(3)`
    B
    `2-18x`
    C
    `x^(2)-3x^(3)`
    D
    `18+x^(2)-3x^(3)`
  • If the demand function is p(x) = 20 -(x)/(2) then the marginal revenue when x = 10 is

    A
    Rs 5
    B
    Rs 10
    C
    Rs 15
    D
    Rs 150
  • If the marginal revenue (MR) is 9-6x^(2)+2x , then revenue function is

    A
    `9x+x^(2)-2x^(3)`
    B
    `9x+x^(2)+2x^(3)`
    C
    `9x-x^(2)+2x^(3)`
    D
    none of the above
  • Similar Questions

    Explore conceptually related problems

    A monopolist's demand function is p= 300 - 5x . Find the average revenue function and marginal revenue function.

    If the cost function C(x)= x^(3)-5x^(2) + 3x+1 , then find the marginal cost function.

    The revenus function is given by R (x) = 100 x -x ^(2) -x ^(3) . Find Marginal revenue function.

    The revenue function is given by R(x) = 100 x - x^2 - x^3 . Find (i) The demand function. (ii) Marginal revenue function.

    The marginal revenue function of a commodity is MR = 9 + 2x - 6x^(2) , find the total revenue function.