Home
Class 12
MATHS
Given C(x)=x^(2)+2x+1, then C'(x) is...

Given `C(x)=x^(2)+2x+1`, then `C'(x)` is

A

`2x+2`

B

`x+2`

C

`x^(2)+2`

D

None of the above

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION-B|9 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise Section - C|12 Videos
  • SPECIMEN QUESTION PAPER

    ICSE|Exercise Section C|8 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are in A.P.and f(x)= |(x+a,x^2+1,1),(x+b, 2x^2-1,1),(x+c,3x^2-2 , 1)| , then f'(x) is :

If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c^2)x(1+a^2)x(1+b^2)x1+c^2x| , then f(x) is a polynomial of degree 0 b. 1 c. 2 d. 3

If a^2+b^2+c^2=-2\ a b n df(x)=|1+a^xx(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c^2)x(1+a^2)x(1+b^2)x1+c^2x| , then f(x) is a polynomial of degree- a. 2 b. \ 3 c. \ 0 d. 1

if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a) (x+sqrt(x^2-4))/2 b) x/(1+x^2) c) (x-sqrt(x^2-4))/2 d) 1+sqrt(x^2-4)

If the polynomial f(x)=a x^3+b x-c is divisible by the polynomial g(x)=x^2+b x+c , then a b= (a) 1 (b) 1/c (c) -1 (d) -1/c

IfI=int(dx)/((2a x+x^2)^(3/2)) ,then I is equal to (a) -(x+a)/(sqrt(2a x+x^2))+c (b) -1/a(x+a)/(sqrt(2a x+x^2))+c (c) -1/(a^2)(x+a)/(sqrt(2a x+x^2))+c (d) -1/(a^3)(x+a)/(sqrt(2a x+x^3))+c

Let A=[[3x^2], [1], [6x]],B=[a,b,c] and C=[[(x+2)^2, 5x^2, 2x],[5x^2, 2x,(x+2)^2],[ 2x,(x+2)^2, 5x^2]] be three given matrices, where a ,b ,ca n dx in Rdot Given that tr(AB)=tr(C). If f(x)=a x^2+b x+c , then the value of f(1) is ______.

Let A=[(3x^2),(1),(6x)],B=[(a,b,c)],and C=[((x+2)^2,5x^2,2x),(5x^2,2x,(x+2)^2),(2x,(x+2)^2,5x^2)] be three given matrices, where a ,b ,c ,"and" x in R dot Given that f(x)=a x^2+b x+c , then the value of f(I) is ______.

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is

It is given that the Rolles theorem holds for the function f(x)=x^3+b x^2+c x ,\ \ x in [1,2] at the point x=4/3 . Find the values of b and c .