Home
Class 12
MATHS
Prove that : cos^(-1) x + cos^(-1) ((x)/...

Prove that : `cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section B|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section C|11 Videos
  • SAMPLE QUESTION PAPER 3

    ICSE|Exercise SECTION-C|7 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .C.|10 Videos

Similar Questions

Explore conceptually related problems

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]

Prove that : cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2)) (ii) Prove that : tan^(-1)((cosx + sin x)/(cosx - sin x)) = (pi)/(4)+ x

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Prove that : cos ((pi)/(3) + x) = ( cos x - sqrt3 sin x )/(2)

Prove that : cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

Prove that : (1)/(2) cos^(-1) ((1+ 2 cos x)/( 2+cosx) ) = tan^(-1) ((1)/(sqrt(3)) "tan" (x)/(2))