Home
Class 12
MATHS
If y="log"(xe^(x)),"then "(dy)/(dx) is...

If `y="log"(xe^(x)),"then "(dy)/(dx)` is

A

`(x+1)/(x)`

B

`1/(x)`

C

`1-x`

D

none of the above

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \log(x e^x) \), we will follow these steps: ### Step 1: Rewrite the function using logarithmic properties We can use the property of logarithms that states \( \log(ab) = \log(a) + \log(b) \). Therefore, we can rewrite the function as: \[ y = \log(x) + \log(e^x) \] Since \( \log(e^x) = x \), we can simplify it further: \[ y = \log(x) + x \] ### Step 2: Differentiate \( y \) with respect to \( x \) Now, we will differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(\log(x)) + \frac{d}{dx}(x) \] Using the derivatives of logarithmic and polynomial functions: \[ \frac{dy}{dx} = \frac{1}{x} + 1 \] ### Step 3: Combine the terms Now we can combine the terms: \[ \frac{dy}{dx} = \frac{1}{x} + 1 = \frac{1 + x}{x} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{x + 1}{x} \] ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .B.|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .C.|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section C|11 Videos
  • SAMPLE QUESTION PAPER-1

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

If y=log(sece^(x^(2))) , then (dy)/(dx) =

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

If y = 36^(log_(6)x) , then (dy)/(dx) is

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=x^((logx)^log(logx)) then (dy)/(dx)=

If y= log (sin x) , then (dy)/(dx) is

If y=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

If y="log"_(2)"log"_(2)(x) , then (dy)/(dx) is equal to

If (x)/(x-y)=log((a)/(x-y)) then (dy)/(dx) is (a) (x)/(y), (b) 2-(x)/(y), (c) 2, (d) (x-y)/(x)

If sin(x+y)=log(x+y) , then (dy)/(dx)= (a) 2 (b) -2 (c) 1 (d) -1