Home
Class 12
MATHS
The minimum value of f(x)= "sin"x, [(-pi...

The minimum value of f(x)= `"sin"x, [(-pi)/(2),(pi)/(2)]` is

A

0

B

1

C

-1

D

none of the above

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .B.|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .C.|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section C|11 Videos
  • SAMPLE QUESTION PAPER-1

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and the minimum values of f(x)=sin3x+4,\ \ x in (-pi//2,\ pi//2) , if any.

The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is

Let f(x)=2 cosec 2x + sec x+cosec x , then the minimum value of f(x) for x in (0,pi/2) is

Find the points of local maxima and local minima, if any, and local maximum and local minimum values of f(x)=sin2x-x , where -pi/2

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is (a) pi (b) pi/2 (c) 2pi (d) (3pi)/2

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

If 0ltxlt(pi)/(2) then the minimum value of (cos^(3)x)/(sinx)+(sin^(3))/(cosx)(x)/(x) , is

The minimum value of the function f(x) =tan(x +pi/6)/tanx is:

The local maximum value of f(x)=(sin^(2)x)/(sin^(2)x-sin^(2)a) (0 lt a lt pi//2) is :