Home
Class 12
MATHS
Using L'Hospital's rule, evaluate : lim(...

Using L'Hospital's rule, evaluate : `lim_(x to 0) (x-sinx)/(x^(2)sinx)`.

Text Solution

Verified by Experts

The correct Answer is:
`1/(6)`
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .B.|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .C.|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section C|11 Videos
  • SAMPLE QUESTION PAPER-1

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Using L' Hospital's rule evaluate: lim_(x to 0) (e^x−1)/x

Evaluate : lim_(x to 0)(tanx-sinx)/(x^(3)) .

Using L' Hospital's Rule evaluate : Lim_(x to o)(1+sinx)^(cotx)

Using L' Hospital's rule, evaluate: lim_(x to 0) ((1)/(x^(2))-(cotx)/(x))

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate lim_(x to 0) (sinx-2)/(cosx-1).