Home
Class 12
MATHS
Evaluate: intx^(2)e^(x^(3))" cos"(2e^(x^...

Evaluate: `intx^(2)e^(x^(3))" cos"(2e^(x^(3)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x^2 e^{x^3} \cos(2 e^{x^3}) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = e^{x^3} \). Then, we need to find \( dt \): \[ dt = \frac{d}{dx}(e^{x^3}) \, dx = e^{x^3} \cdot 3x^2 \, dx \] This implies: \[ dx = \frac{dt}{3x^2 e^{x^3}} \] ### Step 2: Substitute in the Integral Now, substituting \( t \) and \( dx \) into the integral: \[ \int x^2 e^{x^3} \cos(2 e^{x^3}) \, dx = \int x^2 e^{x^3} \cos(2t) \cdot \frac{dt}{3x^2 e^{x^3}} \] The \( x^2 e^{x^3} \) terms cancel out: \[ = \int \frac{1}{3} \cos(2t) \, dt \] ### Step 3: Factor Out the Constant We can factor out the constant \( \frac{1}{3} \): \[ = \frac{1}{3} \int \cos(2t) \, dt \] ### Step 4: Integrate The integral of \( \cos(2t) \) is: \[ \int \cos(2t) \, dt = \frac{1}{2} \sin(2t) + C \] Thus, substituting this back, we have: \[ = \frac{1}{3} \cdot \frac{1}{2} \sin(2t) + C = \frac{1}{6} \sin(2t) + C \] ### Step 5: Substitute Back Now, substitute back \( t = e^{x^3} \): \[ = \frac{1}{6} \sin(2 e^{x^3}) + C \] ### Final Answer The final answer is: \[ \int x^2 e^{x^3} \cos(2 e^{x^3}) \, dx = \frac{1}{6} \sin(2 e^{x^3}) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .B.|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .C.|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section C|11 Videos
  • SAMPLE QUESTION PAPER-1

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intx^2e^(-x)dx

Evaluate: intxe^(x^2)dx

intx^(2)e^(x^(3))cos(e^(x^(3)))dx is equalto

Evaluate: intx/e^(x^2)dx

Evaluate: intx^2/(x^3+1)dx

Evaluate: intx e^(2x)\ dx

Evaluate: intx^2\ e^x\ dx

Evaluate: intx^2\ e^2\ dx

Evaluate: intx^2\ e^(-x)\ dx

Evaluate intx^3(x-1)\dx