Home
Class 12
MATHS
Prove that : 2 "tan"^(-1)1/(2)+"tan"^(-1...

Prove that : `2 "tan"^(-1)1/(2)+"tan"^(-1)1/(7)="sin"^(-1)31/(25sqrt(2))`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .B.|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .C.|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section C|11 Videos
  • SAMPLE QUESTION PAPER-1

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that: 2tan^(-1) {1/2}+tan^(-1) {1/7}=tan^(-1) {(31)/(17)}

Prove that : tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)

prove that: 2 tan ^(-1).(1)/(3) + tan^(-1).(1)/( 7) = (pi)/(4)

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))

Prove that: tan^(-1)(2/11)+tan^(-1)(7/24) = tan^(-1)(1/2)

Prove that: tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)