Home
Class 12
MATHS
Using L'Hospital's rule, evaluate : lim(...

Using L'Hospital's rule, evaluate : `lim_(xrarr0)((e^(x)-e^(-x)-2x))/(x-"sin"x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit using L'Hospital's rule, we start with the expression: \[ \lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} \] ### Step 1: Check the form of the limit First, we substitute \(x = 0\) into the expression: - The numerator becomes: \[ e^0 - e^0 - 2 \cdot 0 = 1 - 1 - 0 = 0 \] - The denominator becomes: \[ 0 - \sin(0) = 0 - 0 = 0 \] Since both the numerator and denominator approach 0, we have the indeterminate form \( \frac{0}{0} \). Thus, we can apply L'Hospital's rule. ### Step 2: Apply L'Hospital's Rule According to L'Hospital's rule, we differentiate the numerator and the denominator separately: - Differentiate the numerator: \[ \frac{d}{dx}(e^x - e^{-x} - 2x) = e^x + e^{-x} - 2 \] - Differentiate the denominator: \[ \frac{d}{dx}(x - \sin x) = 1 - \cos x \] Now, we rewrite the limit: \[ \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x} \] ### Step 3: Substitute \(x = 0\) again We substitute \(x = 0\) into the new expression: - The numerator becomes: \[ e^0 + e^0 - 2 = 1 + 1 - 2 = 0 \] - The denominator becomes: \[ 1 - \cos(0) = 1 - 1 = 0 \] Again, we have the indeterminate form \( \frac{0}{0} \). We apply L'Hospital's rule again. ### Step 4: Differentiate again Differentiate the numerator and the denominator again: - Differentiate the numerator: \[ \frac{d}{dx}(e^x + e^{-x} - 2) = e^x - e^{-x} \] - Differentiate the denominator: \[ \frac{d}{dx}(1 - \cos x) = \sin x \] Now, we rewrite the limit: \[ \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} \] ### Step 5: Substitute \(x = 0\) again Substituting \(x = 0\): - The numerator becomes: \[ e^0 - e^0 = 1 - 1 = 0 \] - The denominator becomes: \[ \sin(0) = 0 \] We still have the form \( \frac{0}{0} \), so we apply L'Hospital's rule one more time. ### Step 6: Differentiate once more Differentiate the numerator and the denominator again: - Differentiate the numerator: \[ \frac{d}{dx}(e^x - e^{-x}) = e^x + e^{-x} \] - Differentiate the denominator: \[ \frac{d}{dx}(\sin x) = \cos x \] Now, we rewrite the limit: \[ \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} \] ### Step 7: Substitute \(x = 0\) one last time Substituting \(x = 0\): - The numerator becomes: \[ e^0 + e^0 = 1 + 1 = 2 \] - The denominator becomes: \[ \cos(0) = 1 \] Thus, we have: \[ \lim_{x \to 0} \frac{2}{1} = 2 \] ### Final Answer The limit is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .B.|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .C.|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section C|11 Videos
  • SAMPLE QUESTION PAPER-1

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Using L Hospital rule evaluate lim_(xrarr0) (e^(x)-1-x)/(x(e^(x)-1))

Evaluate: lim_(xrarr0)x^x

Using L' Hospital's rule evaluate: lim_(x to 0) (e^x−1)/x

Usinfg L' Hospital's rule, evaluate : lim_(xrarr0)(xe^(x)-"log"(1+x))/x^(2)

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).

Evaluate : lim_(x to 0) (e^(x) -e^(x))/x

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

Using L' Hospital's rule, evaluate: lim_(x to 0) ((1)/(x^(2))-(cotx)/(x))

The value of lim_(xrarr0) (e^(ax)-e^(bx))/(x) ,is