Home
Class 12
MATHS
Evaluate : int("sec"x)/(1+"cosec"x)dx...

Evaluate : `int("sec"x)/(1+"cosec"x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{\sec x}{1 + \csc x} \, dx\), we will follow a series of steps to simplify and solve the integral. ### Step 1: Rewrite the integral We start by rewriting \(\sec x\) and \(\csc x\) in terms of sine and cosine: \[ \sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x} \] Thus, the integral becomes: \[ \int \frac{\frac{1}{\cos x}}{1 + \frac{1}{\sin x}} \, dx \] ### Step 2: Simplify the denominator The denominator can be simplified: \[ 1 + \frac{1}{\sin x} = \frac{\sin x + 1}{\sin x} \] So, we can rewrite the integral as: \[ \int \frac{1}{\cos x} \cdot \frac{\sin x}{\sin x + 1} \, dx = \int \frac{\sin x}{\cos x (\sin x + 1)} \, dx \] ### Step 3: Multiply numerator and denominator by \(\cos x\) To facilitate integration, we multiply the numerator and denominator by \(\cos x\): \[ \int \frac{\sin x \cos x}{\cos^2 x (\sin x + 1)} \, dx \] ### Step 4: Change variables Let \(t = \sin x\). Then, \(dt = \cos x \, dx\). The integral becomes: \[ \int \frac{t}{(1 - t^2)(1 + t)} \, dt \] ### Step 5: Use partial fractions We will express \(\frac{t}{(1 - t^2)(1 + t)}\) using partial fractions: \[ \frac{t}{(1 - t^2)(1 + t)} = \frac{A}{1 + t} + \frac{B}{1 - t} + \frac{C}{(1 - t)^2} \] Multiplying through by the denominator \((1 - t^2)(1 + t)\) and equating coefficients will help us find \(A\), \(B\), and \(C\). ### Step 6: Solve for coefficients By substituting suitable values for \(t\) (like \(t = -1\), \(t = 1\), and \(t = 0\)), we can find: - \(A = \frac{1}{4}\) - \(B = -\frac{1}{2}\) - \(C = \frac{1}{4}\) ### Step 7: Rewrite the integral Now, we can rewrite the integral as: \[ \int \left( \frac{1/4}{1 + t} - \frac{1/2}{1 - t} + \frac{1/4}{1 - t^2} \right) dt \] ### Step 8: Integrate each term Integrating each term separately: 1. \(\int \frac{1/4}{1 + t} \, dt = \frac{1}{4} \ln |1 + t|\) 2. \(\int -\frac{1/2}{1 - t} \, dt = -\frac{1}{2} \ln |1 - t|\) 3. \(\int \frac{1/4}{1 - t^2} \, dt = \frac{1}{4} \frac{1}{2} \ln |1 - t| - \frac{1}{4} \frac{1}{2} \ln |1 + t|\) Combining these results gives: \[ \frac{1}{4} \ln |1 + t| - \frac{1}{2} \ln |1 - t| + \frac{1}{4} \ln |1 - t| + C \] ### Step 9: Substitute back Finally, substituting back \(t = \sin x\): \[ \frac{1}{4} \ln |1 + \sin x| - \frac{1}{4} \ln |1 - \sin x| + C \] ### Final Answer Thus, the final answer for the integral is: \[ \frac{1}{4} \ln \left( \frac{1 + \sin x}{1 - \sin x} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .B.|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .C.|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section C|11 Videos
  • SAMPLE QUESTION PAPER-1

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int " cosec"x dx

int (sec^2x)/(cosec^2x) dx

Evaluate: int(secx)/(sec2x)dx

Evaluate : int (1)/(" cosec x ") " dx "

Evaluate: int (sec ^(2) x)/(cosec ^(2) x) dx

Evaluate: int sec^((8)/(9))x. "cosec"^((10)/(9))x dx

Evaluate: int12+cosec x(cosec x+sinx)dx

Evaluate: (i) int(sin^2x)/(1+cosx)\ dx (ii) int(sec^2x+cos e c^2x)\ dx

Evaluate: intsqrt(("cosec"x-cotx)/("cosec"x+cotx).(secx)/sqrt(1+2secx) dx

Evaluate : int(sec^2x)/(3+tanx)\ dx