Home
Class 12
MATHS
Find a unit vector perpendicular to each...

Find a unit vector perpendicular to each of the vectors `veca+vecb,veca-vecb" where vectors a "veca=3hati+2hatj+2hatkandvecb=hati+2hatj-2hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector perpendicular to the vectors \(\vec{a} + \vec{b}\) and \(\vec{a} - \vec{b}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} - 2\hat{k} \] ### Step 2: Calculate \(\vec{a} + \vec{b}\) \[ \vec{a} + \vec{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) + (\hat{i} + 2\hat{j} - 2\hat{k}) \] Combine the components: \[ = (3 + 1)\hat{i} + (2 + 2)\hat{j} + (2 - 2)\hat{k} = 4\hat{i} + 4\hat{j} + 0\hat{k} \] Thus, \[ \vec{a} + \vec{b} = 4\hat{i} + 4\hat{j} \] ### Step 3: Calculate \(\vec{a} - \vec{b}\) \[ \vec{a} - \vec{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) - (\hat{i} + 2\hat{j} - 2\hat{k}) \] Combine the components: \[ = (3 - 1)\hat{i} + (2 - 2)\hat{j} + (2 + 2)\hat{k} = 2\hat{i} + 0\hat{j} + 4\hat{k} \] Thus, \[ \vec{a} - \vec{b} = 2\hat{i} + 4\hat{k} \] ### Step 4: Find the cross product of \(\vec{a} + \vec{b}\) and \(\vec{a} - \vec{b}\) Let \(\vec{u} = \vec{a} + \vec{b} = 4\hat{i} + 4\hat{j} + 0\hat{k}\) and \(\vec{v} = \vec{a} - \vec{b} = 2\hat{i} + 0\hat{j} + 4\hat{k}\). The cross product \(\vec{u} \times \vec{v}\) is given by the determinant: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 4 & 0 \\ 0 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & 0 \\ 2 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & 4 \\ 2 & 0 \end{vmatrix} \] Calculating each of these 2x2 determinants: \[ = \hat{i} (4 \cdot 4 - 0 \cdot 0) - \hat{j} (4 \cdot 4 - 0 \cdot 2) + \hat{k} (4 \cdot 0 - 4 \cdot 2) \] \[ = 16\hat{i} - 16\hat{j} - 8\hat{k} \] Thus, the cross product is: \[ \vec{c} = 16\hat{i} - 16\hat{j} - 8\hat{k} \] ### Step 5: Find the magnitude of \(\vec{c}\) \[ |\vec{c}| = \sqrt{(16)^2 + (-16)^2 + (-8)^2} = \sqrt{256 + 256 + 64} = \sqrt{576} = 24 \] ### Step 6: Find the unit vector The unit vector \(\hat{n}\) in the direction of \(\vec{c}\) is given by: \[ \hat{n} = \frac{\vec{c}}{|\vec{c}|} = \frac{16\hat{i} - 16\hat{j} - 8\hat{k}}{24} \] Simplifying this: \[ = \frac{16}{24}\hat{i} - \frac{16}{24}\hat{j} - \frac{8}{24}\hat{k} = \frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} - \frac{1}{3}\hat{k} \] ### Final Answer: The unit vector perpendicular to both \(\vec{a} + \vec{b}\) and \(\vec{a} - \vec{b}\) is: \[ \hat{n} = \frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} - \frac{1}{3}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .C.|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .C.|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section C|11 Videos
  • SAMPLE QUESTION PAPER-1

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to each of the vectors 2veca+vecb and veca-2vecb where veca=hati+2hatj-hatk and vecb=hati+hatj+hatk

Find a unity vector perpendicular to each of the vectors (veca+vecb) and (veca-vecb) , where veca=hati+hatj+hatk and vecb=hati+2hatj+3hatk

Find a unit vector perpendicular to the plane of two vectors veca and vecb where veca=4hati-hatj+3hatk and vecb=-2hati+hatj-hatk

Find a unit vector perpendicular to the plane of two vectors veca and vecb where veca=hati-hatj and vecb=hatj+hatk

Find a vector whose magnitude is 3 units and which is perpendicular to the vectors veca and vecb where veca=3hati+hatj-4hatk and vecb=6hati+hatj-2hatk

Find the angle between the vectors veca+vecb and veca-vecb if veca=2hati-hatj+3hatk and vecb=3hati+hatj-2hatk .

Find a unit vector perpendicular to both the vectors. vecA = 3hati + hatj + 2hatk and vecB = 2hati - 2hatj + 4hatk .

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

Find the angle between the vectors: vecA=hati-2hatj-5hatkandvecB=2hati+hatj-4hatk