Home
Class 12
MATHS
Given that the observations are : (9,...

Given that the observations are :
`(9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8)`. Find the two lines of regression and estimate the value of y when x = 13.5.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Organize the Data We will create a table to summarize the given observations and calculate the necessary values. | x | y | x² | y² | xy | |----|----|------|------|------| | 9 | -4 | 81 | 16 | -36 | | 10 | -3 | 100 | 9 | -30 | | 11 | -1 | 121 | 1 | -11 | | 12 | 0 | 144 | 0 | 0 | | 13 | 1 | 169 | 1 | 13 | | 14 | 3 | 196 | 9 | 42 | | 15 | 5 | 225 | 25 | 75 | | 16 | 8 | 256 | 64 | 128 | ### Step 2: Calculate Summations Now, we will calculate the summation of x, y, x², y², and xy. - \( \Sigma x = 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 100 \) - \( \Sigma y = -4 - 3 - 1 + 0 + 1 + 3 + 5 + 8 = 9 \) - \( \Sigma x^2 = 81 + 100 + 121 + 144 + 169 + 196 + 225 + 256 = 1292 \) - \( \Sigma y^2 = 16 + 9 + 1 + 0 + 1 + 9 + 25 + 64 = 125 \) - \( \Sigma xy = -36 - 30 - 11 + 0 + 13 + 42 + 75 + 128 = 181 \) ### Step 3: Calculate Means Next, we will calculate the means of x and y. - \( \bar{x} = \frac{\Sigma x}{n} = \frac{100}{8} = 12.5 \) - \( \bar{y} = \frac{\Sigma y}{n} = \frac{9}{8} = 1.125 \) ### Step 4: Calculate Regression Coefficients Now we will calculate the regression coefficients \( b_{yx} \) and \( b_{xy} \). **For \( b_{yx} \):** \[ b_{yx} = \frac{\Sigma xy - \frac{1}{n}(\Sigma x)(\Sigma y)}{\Sigma x^2 - \frac{1}{n}(\Sigma x)^2} \] Substituting the values: \[ b_{yx} = \frac{181 - \frac{1}{8}(100)(9)}{1292 - \frac{1}{8}(100^2)} \] Calculating: \[ b_{yx} = \frac{181 - 112.5}{1292 - 1250} = \frac{68.5}{42} \approx 1.63 \] **For \( b_{xy} \):** \[ b_{xy} = \frac{\Sigma xy - \frac{1}{n}(\Sigma x)(\Sigma y)}{\Sigma y^2 - \frac{1}{n}(\Sigma y)^2} \] Substituting the values: \[ b_{xy} = \frac{181 - \frac{1}{8}(100)(9)}{125 - \frac{1}{8}(9^2)} \] Calculating: \[ b_{xy} = \frac{181 - 112.5}{125 - 10.125} = \frac{68.5}{114.875} \approx 0.596 \] ### Step 5: Form the Regression Equations **1. Regression Line of Y on X:** \[ y - \bar{y} = b_{yx}(x - \bar{x}) \] Substituting the values: \[ y - 1.125 = 1.63(x - 12.5) \] Rearranging gives: \[ y = 1.63x - 19.25 \] **2. Regression Line of X on Y:** \[ x - \bar{x} = b_{xy}(y - \bar{y}) \] Substituting the values: \[ x - 12.5 = 0.596(y - 1.125) \] Rearranging gives: \[ x = 0.596y + 11.83 \] ### Step 6: Estimate the Value of y when x = 13.5 Using the regression equation of Y on X: \[ y = 1.63(13.5) - 19.25 \] Calculating: \[ y = 22.005 - 19.25 = 2.755 \] ### Final Answer The estimated value of y when x = 13.5 is approximately **2.755**.
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise Section .B.|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise Section C|11 Videos
  • SAMPLE QUESTION PAPER-1

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Find the equation of the regression line of y on x, if the observation (x,y) are as follows : (1, 4), (2, 8), (3, 2), (4, 12), (5, 10), (6, 14), (7, 16), (8, 6), (9, 18) Also, find the estimated value of y when x = 14.

The following observations are given : (1,4), (2, 8), (3, 2), (4,12), (5,10), (6,14), (7,16), (8,6), (9,18). Estimate the value ofy when the value of x is 10 and also estimate the value ofx when the value of y = 5

If the line of regression on x on y is 40x - 18y = 214 , then estimate the value of x when y=3

If the regression equation of y x is given by x+ y =8 , then estimate the value of y when x is 3.5 .

If the two lines of regression are 4x-5y+33=0and20x-9y-107=0 , find the variance of y when sigma_(x)=3 .

. Find the median of the given data: 9, 7, 12, 16, 8, 11, 16, 13, 10

Calculate the covariance of observation (3,5), (6,7),(9,9), (12,11), (15,13), (18,15), (21,17), (24, 19) using assumed mean A = 13 and B = 12.

If 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) , then find the value of x+y.

The ages of 15 students in years) in a summer camp are as follows: 11, 14, 13, 15, 16, 10, 12, 12, 14, 11, 10, 12, 13, 15, 11 Find: the range of age.

Solve the equation: |[15-x, 1, 10],[11-3x, 1, 16],[7-x, 1, 13]|=0