Home
Class 8
MATHS
root(3)(1/27)=...

`root(3)(1/27)`=___

A

`1/8`

B

`1/4`

C

`1/6`

D

`1/3`

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOTS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|173 Videos
  • RATIONAL NUMBER

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|213 Videos
  • SUMMATIVE ASSESSMENT

    VGS PUBLICATION-BRILLIANT|Exercise SUMMATIVE ASSESSMENT|26 Videos

Similar Questions

Explore conceptually related problems

By neglecting x^(4) and higher powers of x, find an approximate value of root(3)(x^(2)+64)-root(3)(x^(2)+27).

Evaluate {:(" Lt"),(xrarr0):}(root(3)(1+x)-root(3)(1-x))/(x)

Knowledge Check

  • If x is so small, higher powers of x may be neglected then root(3)(x^2 + 27) - root(3)(x^2+8)=

    A
    `2-(5x^2)/(24)`
    B
    `1+(5x^2)/(108)`
    C
    `1-(5x^2)/(108)`
    D
    `2+(5x^2)/(24)`
  • log_(3)""(1)/(27)=……..

    A
    3
    B
    6
    C
    `-3`
    D
    `-7`
  • root(3)(1003)-root(3)(997)=

    A
    `0.01`
    B
    `0.02`
    C
    `0.03`
    D
    `0.04`
  • Similar Questions

    Explore conceptually related problems

    Compute the following limits Lt_(x to 0) (root(3)(1 + x) - root(3)(1 - x))/(x)

    Evaluate Lt_(x to 0) (root(3)(1+x)-root(3)(1-x))/(x)

    Find the term independent of x in the expansion of (root(3)(x)+1/2root(3)(x))^18 ,x > 0.

    Write the following in exponemtial form log_(3) ((1)/(27))=y

    BY neglecting x^4 and higher powers of x show that root(3)(x^2 + 64) - root(3)(x^2 +27) = 1 - 7/432 x^2