Home
Class 12
MATHS
If tan^(-1)x+tan^(-1)y=pi/4, then write ...

If `tan^(-1)x+tan^(-1)y=pi/4,` then write the value of `x+y+x ydot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y=(pi)/(4), then write the value of x+y+xy.

If "tan"^(-1)x+"tan"^(-1)y=pi/4,xylt1 , then write the value of x+y+xy .

If tan^-1 x + tan^-1y = pi/4, xy < 1, then write the value of x +y + xy.

If tan^(-1)x+tan^(-1)y=(pi)/(4) , and the value of xy<1 ,then show that x+y+xy=1 .

if tan^-1x+tan^-1y=pi/4 then prove that x+y+xy=1

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If tan^(-1) x +tan^(-1) y = pi/4 , xy lt 1 , then prove that x+y+xy=1 .