Home
Class 11
MATHS
Prove that cos (A+B)+sin (A-B)=2sin (A+p...

Prove that `cos (A+B)+sin (A-B)=2sin (A+pi/4)cos(B+pi/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^2(pi/4-B)-sin^2(pi/4-A)=sin(A+B)cos(A-B)

Prove that. cos(pi/3)cos(pi/6)+sin(pi/3)sin(pi/6)=cos(pi/6)

If A +B = 90 , prove that (sin A- sin B)^2 = 1-2 sin A cos A .

If A +B = 90 , prove that cos A = sqrt (cos A/sin B - sin A cos B) .

If A +B = 90 , prove that (cos A + cos B)/(sin A+ sinB)=1 .

If A + B + C = pi , prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A + B + C = pi , prove that sin(A/2)+sin(B/2)+sin(C/2)=1+4sin((pi-A)/4)sin((pi-B)/4)sin((pi-C)/4)

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

Prove that cos theta/(1-sin theta)=tan (pi/4+theta/2)