Home
Class 11
MATHS
Prove that sqrt((1-sin theta)/(1+sin the...

Prove that `sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta))=-2/cos theta`,where `pi/2ltthetaltpi`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1+cos theta)/(sin theta)=(1+sin theta+cos theta)/(1+sin theta-cos theta) .

Prove that:b. cos(90^@-theta)/(1+sin(90^@-theta))+(1+sin(90^@-theta))/cos(90^@-theta)=2cosectheta

Prove that cos theta/(1-sin theta)=tan (pi/4+theta/2)

If R(theta) = [(cos theta, sin theta),(sin theta, -cos theta)] Write:- R(pi/2) .

Evaluate (sin (90 - theta). cos (90 - theta))/(sin theta cos theta)

Find dy/dx : x = cos theta + sin theta, y = sin theta - theta cos theta

Prove the following (sin theta) /(1+costheta) =(1-costheta) /(sintheta)

Prove that 8 sin^4(theta/2)-8sin^2(theta/2)+1=cos2theta

Prove that cos (2theta) /(1+sin 2 theta)=tan(pi/4-theta)

Solve: 2sin^2 theta +sqrt(3) cos theta+1=0