Home
Class 11
MATHS
In any quadrilateral ABCD,prove that sin...

In any quadrilateral ABCD,prove that `sin(A+B)+sin(C+D)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCD be a cyclic quadrilateral,-prove that sin A+ sin B -sin C -sin D = 0

If ABCD be a cyclic quadrilateral,-prove that cos A + cos B + cos C + cos D = 0

In a triangle ABC, prove that (a^2sin(B-C))/sinA+(b^2sin(C-A))/sinB+(c^2sin(A-B))/sinC=0

In a ∆ ABC prove that cos ((A+B)/2) = sin (c/2) .

In a ∆ ABC prove that sin( (A+B)/2) = COS (c/2) .

If A,B,C are the interior angles of ABC, then prove that cos((A+B)/2)=sin(C/2) .

If A + B + C = pi , prove that sin(A/2)+sin(B/2)+sin(C/2)=1+4sin((pi-A)/4)sin((pi-B)/4)sin((pi-C)/4)

Prove that the perimeter of any quadrilateral is greater than the sum of the diagonals.

Prove that in a quadrilateral ABCD, cosA+cosB+cosC+cosD-4cos((A+B)/2)cos((A+C)/2)cos((A+D)/2)=0

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B