Home
Class 11
MATHS
Prove that sin 600^@ cos 390^@ +cos 480^...

Prove that `sin 600^@ cos 390^@ +cos 480^@ sin 150^@`=-1.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of :a. sin60^@ cos30^@+cos60^@sin30^@

Prove that: ((1+2sin 60cos 60)/(sin 60+cos 60))+((1-2sin 60cos 60)/(sin 60-cos 60))=√3

Prove that (sin A+sin 2A)/(1+cos A +cos 2A)=tan A

Evaluate |(sin 10^(@) -cos 10^(@)),(sin 80^(@) cos 80^(@))|

Verify:c. tan30^@(sin60^@+sin30^@+cos0^@)=(cos60^@+sin60^@)

Prove that: (cos^2 20° + cos^2 70°)/(sin^2 20° + sin^2 70°) +sin^2 64° + cos 64° sin 26°=2 .

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

Prove that (sin^3A+cos^3A)/(sin A+cos A)+(sin^3A-cos^3A)/(sin A-cos A)=2

If A + B + C = pi , prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

Evaluate : |(sin30^@, cos30^@),(-sin60^@, cos60^@)| .