Home
Class 11
MATHS
If tan alpha=m/(m+1) and tan beta=1/(2m+...

If `tan alpha=m/(m+1)` and `tan beta=1/(2m+1)`,prove that `alpha+beta=pi/4`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^2alpha = 1 + tan^2beta ,then prove that cos^2 beta = cot^2alpha

If alpha=sin^(-1)(2/3)" and "beta=tan^(-1)(1/2) , where 0lt alpha,betalt(pi)/(2), then find the value of alpha-beta .

If cos alpha=13/14 and cos beta=1/7 where alpha and beta are acute angles,show that alpha-beta=pi/3 .

If the points A(1, 0), (0, 1) and ( alpha , beta ) are collinear prove that alpha + beta = 1

If 2 tan beta + cot beta = tan alpha , prove that 2 tan (alpha-beta) = cot beta

If tan^-1 x+tan^-1 y+tan^-1 z=pi/2 , prove that xy+yz+zx=1

If tan^4theta - tan^2 theta= 1 , then prove that cos^4theta+ cos^2theta = 1

If alpha and beta are the solution of the equation a tan theta +b sec theta=c ,then show that tan(alpha+beta)=2ac/(a^2-c^2)

If alpha+beta+gamma=0 ,prove that cosalpha+cosbeta+cosgamma=4cos(alpha/2)cos(beta/2)cos(gamma/2)-1

if tanalpha , tanbeta are the roots of x^2+px+q=0 ,show that sin^2(alpha+beta)+p sin(alpha+beta)cos(alpha+beta)+q cos^2(alpha+beta)=q