Home
Class 11
MATHS
Prove that cos^2(pi/4-theta)-sin^2(pi/4-...

Prove that `cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin 2theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^2(pi/4-B)-sin^2(pi/4-A)=sin(A+B)cos(A-B)

Prove that 8 sin^4(theta/2)-8sin^2(theta/2)+1=cos2theta

Prove that cos (2theta) /(1+sin 2 theta)=tan(pi/4-theta)

Prove that (1+cos theta)/(sin theta)=(1+sin theta+cos theta)/(1+sin theta-cos theta) .

Prove that cos theta/(1-sin theta)=tan (pi/4+theta/2)

Prove the following sin^4theta-cos^4theta=sin^2theta-cos^2theta=1-2cos^2theta=2sin^2theta-1

If cos theta+sin theta=sqrt 2 cos theta ,then prove that cos theta-sin theta = sqrt 2 sin theta .

Prove the following (sec ^2theta -1) cos^2 theta=sin^2theta

Find cos^2 theta - sin^2 theta . .

Solve : 4sinthetasin2thetasin4theta=sin3theta