Home
Class 11
MATHS
Prove that ^(n-1)Pr+r.^(n-1)P(r-1)=^nPr....

Prove that `^(n-1)P_r+r.^(n-1)P_(r-1)=^nP_r`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: ""^(n-1)P_r=(n-r)* ""^(n-1)P_(r-1)

Prove that n.^(n-1)C_(r-1)=(n-r-1) ^nC_(r-1)

Prove that .^(n+1)C_(r+1)+^nC_r+^nC_(r-1)=^(n+2)C_(r+1)

Prove that ""^(n-2)C_r+2* ""^(n-2)C_(r-1)+ ""^(n-2)C_(r-2)=""^nC_r

Prove that: ""^(n+1)P_(r+1)=(n+1)* ""^nP_r .

Show that .^nC_r+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_r

Prove that: n(n-1)(n-2)…..(n-r+1)=(n!)/((n-r)!)

Prove that ""^nC_r+""^nC_(r+1)+""^(n+1)C_(r+2)=""^(n+2)C_(r+2)

If x,y,z are in G.P and p,q,r are in A.P then prove that x^(q-r) y^(r-p) z^(p-q)=1 .

Show that ^nC_r+2. ^nC_(r-1)+ ^nC_(r-2)= ^(n+2)C_r