Similar Questions
Explore conceptually related problems
Recommended Questions
- Prove that .^(n+1)C(r+1)+^nCr+^nC(r-1)=^(n+2)C(r+1)
Text Solution
|
- Prove that "^n Cr+^(n-1)Cr+...+^r Cr=^(n+1)C(r+1) .
Text Solution
|
- If nCr +nC(r+1) = (n+1)Cx then x is
Text Solution
|
- Property:- (i) nCr=nC(n-r) (ii) (nCr)/(r+1)=((n+1)C(r+1))/(n+1)
Text Solution
|
- ^n Cr :^n C(r+1)=1:2and^n C(r+1):^n C(r+2)=2:3,f i n dnandr
Text Solution
|
- Prove that .^(n)C(r )+.^(n-1)C(r )+..+.^(r )C(r )=.^(n+1)C(r+1)
Text Solution
|
- यदि 1 le r le n, तो सिद्ध कीजिए .^(n-1)C(r-1)=(n-r+1).^nC(r-1).
Text Solution
|
- |(.^(n-1)C(r-1),.^(n-1)C(r),.^(n-1)C(r+1)),(.^(n-1)C(r),.^(n-1)C(r+1),...
Text Solution
|
- Prove that : .^(n-1)C(r)+.^(n-2)C(r)+.^(n-3)C(r)+.........+.^(r)C(r)...
Text Solution
|