Home
Class 11
MATHS
Prove that n.^(n-1)C(r-1)=(n-r-1) ^nC(r-...

Prove that `n.^(n-1)C_(r-1)=(n-r-1) ^nC_(r-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that .^(n+1)C_(r+1)+^nC_r+^nC_(r-1)=^(n+2)C_(r+1)

Prove that: ""^(n-1)P_r=(n-r)* ""^(n-1)P_(r-1)

Show that .^nC_r+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_r

Prove that .^(n-1)P_r+r.^(n-1)P_(r-1)=^nP_r .

Prove that: ""^(n+1)P_(r+1)=(n+1)* ""^nP_r .

Prove that ""^(n-2)C_r+2* ""^(n-2)C_(r-1)+ ""^(n-2)C_(r-2)=""^nC_r

Prove that: n(n-1)(n-2)…..(n-r+1)=(n!)/((n-r)!)

Prove that ""^nC_r+""^nC_(r+1)+""^(n+1)C_(r+2)=""^(n+2)C_(r+2)

Show that ^nC_r+2. ^nC_(r-1)+ ^nC_(r-2)= ^(n+2)C_r