Home
Class 11
MATHS
If x,y,z are in G.P then show that loga ...

If x,y,z are in G.P then show that `log_a x+log_a z=2/(log_y a),(x>0,y>0,z>0)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are in G.P then show that log x,log y,log z are in A.P. (x>0,y>0,z>0) .

Prove that log_a x+log_(1/a) x=0

Prove that log_a x.log_b y=log_b x.log_a y

If 1/2 , x, y, z, 128 are in G.P., then find x,y,z,

If x, y, z,w in are in G.P., prove that (xy-wz)/(y^2-z^2)=(x+z)/y .

Determine x if log_5 {log_3 (log_2 x)}=0

If x^2+y^2=7xy ,then prove that log(x+y)=log3+1/2(logx+logy)

Prove that 1/(log_(a/b) x)+1/(log_(b/c) x)+1/(log_(c/a) x)=0

If x^2+y^2=11xy ,then prove that log((x+y)/13)=1/2(logx+logy)

If x,y,z are in G.P and p,q,r are in A.P then prove that x^(q-r) y^(r-p) z^(p-q)=1 .