Home
Class 12
MATHS
The point ( [ P + 1 ] , [ P ] ) (whe...

The point `( [ P + 1 ] , [ P ] )` (where [.] denotes the greatest integer function), lying inside the region bounded by the circle `x^2 + y^2 - 2x - 15 = 0 and x^2 + y^2 - 2x - 7 =0,` then :

A

`P in[-1,0)uu(0,1)uu(1,2)`

B

`P in (0, 1)`

C

`P in (-1,2)`

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 6

    KVPY PREVIOUS YEAR|Exercise EXERCISE|23 Videos
  • MOCK TEST 8

    KVPY PREVIOUS YEAR|Exercise EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

The point ([P+1P]) (where [.] denotes the greatest integer function),lyinginside the region bounded by x^(2)+y^(2)-2x-15=0 and x^(2)+y^(2)-2x-7=0 then :

If f(x)=[2x], where [.] denotes the greatest integer function,then

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)