Home
Class 12
MATHS
The value o lim(xtooo)(1/(n^(3)))([1^(2)...

The value o `lim_(xtooo)(1/(n^(3)))([1^(2)x+1^(2)]+[2^(2)x+2^(2)]+…..+[n^(2)x+n^(2)])` is where [.] denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

f(x)=sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] where [.1 denotes the greatest integer function.

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

The value of int_(1)^(2)(x^([x^(2)])+[x^(2)]^(x))dx, where [.] denotes the greatest integer function,is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

lim_(zto oo)(int_(1//2)^(2)[cot^(-1)x]dx)/(int_(1//2)^(z)[1+1/x]dx) , where [.] denotes the greatest integer function equals

lim_(xrarroo)([x]+[2x]+[3x]+….+[nx])/(n^(2)) , where [*] denotes greatest integer function, is