Home
Class 11
MATHS
int(tan^(-1)x+x+tan^(-1)((1)/(x)))dx=...

`int(tan^(-1)x+x+tan^(-1)((1)/(x)))dx`=

Promotional Banner

Similar Questions

Explore conceptually related problems

int (tan^(-1)x)dx

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

int (x tan^-1x dx)

The value of int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx is tan e(b)tan^(-1)e tan^(-1)((1)/(e))(d) none of these

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int tan^(-1)((1)/(1-x+x^(2)))dx

int tan^(-1)((a+x)/(a-x))dx

int tan^(-1)((a+x)/(a-x))dx

The value of int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx is equal to

int(tan^(-1)x)/(x^(2))*dx