Home
Class 11
MATHS
Suppose f is a function that satisfies t...

Suppose f is a function that satisfies the equation `f(x + y) = f(x) + f(y)+x^2y+xy^2`€ for all real numbers `x and y`. If `lim_(x->0) (f(x))/x=1`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f is a function that satisfies the equation f(x+y)=f(x)+f(y)+x^(2)y+xy^(2)? for all real numbers x and y. If lim_(x rarr0)(f(x))/(x)=1 then

Suppose f is a derivable function that satisfies the equation f(x+y)=f(x)+f(y)+x^2y+x y^2 for all real numbers x\ a n d\ y . Suppose that (lim)_(x->0)(f(x))/x=1,\ fin d f(0) b. f^(prime)(0) c. f^(prime)(x) d. f(3)

Suppose a differntiable function f(x) satisfies the identity f(x+y)=f(x)+f(y)+xy^(2)+xy for all real x and y .If lim_(x rarr0)(f(x))/(x)=1 then f'(3) is equal to

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f'(3) is

let f(x) be the polynomial function. It satisfies the equation 2 +f(x)* f(y) = f(x) + f(y) +f(xy) for all x and y. If f(2) =5 find f|f(2)| .

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

A function f:R rarr R satisfy the equation f(x)f(y)-f(xy)=x+y for all x,y in R and f(y)>0, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

Let f(x) be a differentiable function which satisfies the equation f(xy)=f(x)+f(y) for all x>0,y>0 then f'(x) equals to