Home
Class 11
MATHS
Find (lim)(x->0)f(x), where f(x)=[x/(|x|...

Find `(lim)_(x->0)f(x)`, where `f(x)=[x/(|x|), x!=0 0, x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (lim)_(x rarr0)f(x), where f(x)=[[(x)/(|x|),x!=00,x=0]]

Evaluate (lim_(x rarr0)f(x), where f(x)=[(|x|)/(x),x!=0,0,x=0

Evaluate (lim)_(x rarr0)f(x), where f(x)={(|x|)/(x),x!=00,x=0

Find lim_(x to 0)f(x) , where f(x)=abs(x)-5.

Find lim_(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}

Find lim_(x rarr0)f(x) and lim_(x rarr1)f(x), where f(x)=[(2x+3),x 0

Find lim_(x to 1) f(x) , where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}

lim_(x rarr0)f(x)and(lim)_(x rarr1)f(x), where f(x)=[2x+3,x 0

Find lim_(x to 0) f(x) , where f(x)={{:( x/abs "x " " ,", x ne 0), ( 0",", x =0) :}

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}