Home
Class 11
MATHS
(2) If f(x)=x+(1)/(x), then [f(x)]^(3)-f...

(2) If `f(x)=x+(1)/(x)`, then `[f(x)]^(3)-f(x^(3))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)+(1)/(x^(3)), then f(x)+f((1)/(x)) is equal to

If f(x)=(1)/(1-x), then f(f(f(x))) is equal to

If f(x)=3^(1+x)," then "f(x)f(y)f(z) is equal to

If f(x) = x^(3) - (1)/(x^(3)) then f (x) + f ((1)/(x)) is equal to

Let f(x)=x+(1)/(x), Then f(x^(3)) equals

If f(x)=x+3, then f(x)+f(-x) is equal to

If f(x)=log((1+x)/(1-x)) and then f((2x)/(1+x^(2))) is equal to {f(x)}^(2) (b) {f(x)}^(3)(c)2f(x)(d)3f(x)

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

If f(x ) = a^x , then [ f(p) ]^3 is equal to