Home
Class 12
MATHS
(dy)/(dx)=2y,(y>0)...

`(dy)/(dx)=2y,(y>0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of the equation (x+2y^(3))(dy)/(dx)-y=0,(y>0) is

Solve: (x+3y^2)(dy)/(dx)=y(ygt0)

Find the particular solution of the following : (x+1)(dy)/(dx)=2e^(-y)-1,y(0)=0 .

Solve the following initial value problem: (x+1)(dy)/(dx)=2e^(-y)-1,y=(0)=0

Solve the following initial value problem: xy(dy)/(dx)=y+2,y(2)=0

For each of the following initial value problems verify that the accompanying functions is a solution. (i) x(dy)/(dx)=1, y(1)=0 => y=logx (ii) (dy)/(dx)=y , y(0)=1 => y=e^x (iii) (d^2y)/(dx^2)+y=0, y(0)=0, y^(prime)(0)=1 => y=sinx (iv) (d^2y)/(dx^2)-(dy)/(dx)=0, y(0)=2, y^(prime)(0)=1 => y=e^x+1 (v) (dy)/(dx)+y=2, y(0)=3 => y=e^(-x)+2

If y(x) is the solution of the differential equation (dy)/(dx)=-2x(y-1) with y(0)=1 , then lim_(xrarroo)y(x) equals

The equation of the curve whose slope is given by (dy)/(dx)=(2y)/(x);x>0,y>0 and which passes through the point (1,1) is x^(2)=yby^(2)=x c.x^(2)=2y d.y^(2)=2x

Solve : y^(2)-x(dy)/(dx)=a(y+(dy)/(dx))

"(dy)/(dx)=y^(2)+2y