Home
Class 11
MATHS
lim(x->0)(sin^(- 1)x-tan^(- 1)x)/(x^2)...

`lim_(x->0)(sin^(- 1)x-tan^(- 1)x)/(x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(2))

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3)) equals

Evaluate: lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3))

lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

Evaluate lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)).

lim_(x rarr0)((sin^(-1)x-tan^(-1)x)/(x^(3))+(84x tan^(-1)(sqrt(2)-1))/(sin pi x))

If lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(3x^(3)) is equal to L ,then the value of (6L+1) is:

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

If I_(1)=lim_(xto 0)sqrt((tan^(-1)x)/x-(sin^(-1)x)/x) and I_(2)=lim_(xto0)sqrt((sin^(-1)x)/x-(tan^(-1)x)/x) , where |x|lt1 , which of the following statement is true?