Home
Class 12
MATHS
(sqrt3/2+i/2)^5 - (sqrt3/2-i/2)^5=...

`(sqrt3/2+i/2)^5 - (sqrt3/2-i/2)^5=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(2+sqrt3)/2 + (5-sqrt3)/3

Prove that (sqrt(3)/(2) +(i)/(2))^(5) + (sqrt(3)/(2) -(i)/(2))^(5) is purely real.

values (s)(-i)^((1)/(3)) is/are (sqrt(3)-i)/(2) b.(sqrt(3)+i)/(2)c .(-sqrt(3)-i)/(2)d.(-sqrt(3)+i)/(2)

(-sqrt3 + sqrt(-2))(2sqrt3-i)

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then prove that Im(z)=0

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then prove that Im(z)=0

If z=((sqrt(3))/(2)+(1)/(2)i)^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then (a) im(z)=0 (b) Re(z)>0,Im(z)>0(c)Re(z)>0,Im(z)<0 (d) Re(z)=3

2 - sqrt3 i - sqrt2