Home
Class 12
MATHS
y=int1^x x.sqrt(ln t) dt . Find the valu...

`y=int_1^x x.sqrt(ln t) dt` . Find the value of `(d^2y)/dx^2` at x = e

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = int_(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(2)) at x = e

y= int_(x)^(x^(2)) sqrt(5-t^(2))dt then the value of (dy)/(dx) at x= sqrt(2) is

If x = int_0^y (1/sqrt(1+4t))dt then what is the value of (d^2y)/(dx^2) .

If x= cos t+ log tan t/2 and y = sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t= (pi)/4 .

If x=cos t + (log tant)/2, y=sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2)  at t =pi/4.

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2))a=(pi)/(4)

Variable x and y are related by equation x=int_(0)^(y)(dt)/(sqrt(1+t^(2)))* The value of (d^(2)y)/(dx^(2)) is equal

If y = int_(0)^(x) (t^(2))/(sqrt(t^(2)+1))dt then (dy)/(dx) at x=1 is